Project Introduction
During the course of my last semester in the Energy and Sustainability Policy program with Penn State, I worked with Fred and Jennifer Johnson of Johnson Estate Winery to create an inventory of their Scope 1 and 2 emissions along with an estimation of how much carbon they sequestered on their 300 acre property. The property consists of vineyards, forests, and hayfields. I also looked into comparing sustainable forestry to utility scale solar installation, as there has been a recent push for large scale solar projects around the winery and the owners were interested in learning more about what would be the best use of their lands.
References
Algayerova, O., Bárcena, A., Dashti, R., Alisjahbana, A. S., & Songwe, V. (2021, November 1). UNSDG | Scaling up carbon dioxide removal to achieve climate targets. Action 2030 Blog. https://unsdg.un.org/latest/blog/scaling-carbon-dioxide-removal-achieve-climate-targets, https://unsdg.un.org/latest/blog/scaling-carbon-dioxide-removal-achieve-climate-targets
Arndt, K. A., Campbell, E. E., Dorich, C. D., Grandy, A. S., Griffin, T. S., Ingraham, P., Perry, A., Varner, R. K., & Contosta, A. R. (2022). Initial soil conditions outweigh management in a cool-season dairy farm’s carbon sequestration potential. Science of The Total Environment, 809, 152195. https://doi.org/10.1016/j.scitotenv.2021.152195
BACON, G. (2023, February 21). Ida says solar farms using just 2% of county farmland. Post-Journal. https://www.post-journal.com/news/top-stories/2023/02/ida-says-solar-farms-using-just-2-of-county-farmland/
Barnes, A. P., McMillan, J., Sutherland, L.-A., Hopkins, J., & Thomson, S. G. (2022). Farmer intentional pathways for net zero carbon: Exploring the lock-in effects of forestry and renewables. Land Use Policy, 112, 105861. https://doi.org/10.1016/j.landusepol.2021.105861
Brewer, B. &. (2022, June 29). Kiwi brewery harnesses carbon-capture technology. Beer & Brewer. https://www.beerandbrewer.com/kiwi-brewery-harnesses-carbon-capture-technology/
Buyanovsky, G. A., & Wagner, G. H. (1998). Carbon cycling in cultivated land and its global significance. Global Change Biology, 4(2), 131–141. https://doi.org/10.1046/j.1365-2486.1998.00130.x
Caban, J., Vrabel, J., Šarkan, B., Zarajczyk, J., & Marczuk, A. (2018). Analysis of the market of electric tractors in agricultural production. MATEC Web of Conferences, 244, 03005. https://doi.org/10.1051/matecconf/201824403005
Choi, C. S., Cagle, A. E., Macknick, J., Bloom, D. E., Caplan, J. S., & Ravi, S. (2020). Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure. Frontiers in Environmental Science, 8, 140. https://doi.org/10.3389/fenvs.2020.00140
Dhillon, R. S., & Von Wuehlisch, G. (2013). Mitigation of global warming through renewable biomass. Biomass and Bioenergy, 48, 75–89. https://doi.org/10.1016/j.biombioe.2012.11.005
Electric vehicles – analysis. (n.d.). IEA. Retrieved April 10, 2023, from https://www.iea.org/reports/electric-vehicles
Ferrara, C., & De Feo, G. (2020). Comparative life cycle assessment of alternative systems for wine packaging in Italy. Journal of Cleaner Production, 259, 120888. https://doi.org/10.1016/j.jclepro.2020.120888
Heat pump systems. (n.d.). Energy.Gov. Retrieved April 10, 2023, from https://www.energy.gov/energysaver/heat-pump-systems
Hosseinzadeh-Bandbafha, H., Rafiee, S., Mohammadi, P., Ghobadian, B., Lam, S. S., Tabatabaei, M., & Aghbashlo, M. (2021). Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with diesel–biodiesel-bioethanol blends. Energy Conversion and Management, 241, 114300. https://doi.org/10.1016/j.enconman.2021.114300
Gross, S. (2020, January 13). Renewables, land use, and local opposition in the United States. Brookings. https://www.brookings.edu/research/renewables-land-use-and-local-opposition-in-the-united-states/
Ioannidis, R., & Koutsoyiannis, D. (2020). A review of land use, visibility and public perception of renewable energy in the context of landscape impact. Applied Energy, 276, 115367. https://doi.org/10.1016/j.apenergy.2020.115367
Li, Y., Rosengarten, G., Stanley, C., & Mojiri, A. (2022). Electrification of residential heating, cooling and hot water: Load smoothing using onsite photovoltaics, heat pump and thermal batteries. Journal of Energy Storage, 56, 105873. https://doi.org/10.1016/j.est.2022.105873
Liu, W.-Y., Chiang, Y.-H., & Lin, C.-C. (2022). Adopting renewable energies to meet the carbon reduction target: Is forest carbon sequestration cheaper? Energy, 246, 123328. https://doi.org/10.1016/j.energy.2022.123328
Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., & Wery, J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology, 177, 117–132. https://doi.org/10.1016/j.agrformet.2013.04.012
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
Moscatelli, M. C., Marabottini, R., Massaccesi, L., & Marinari, S. (2022). Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area. Geoderma Regional, 29, e00500. https://doi.org/10.1016/j.geodrs.2022.e00500
Nilson, R. S., & Stedman, R. C. (2022). Are big and small solar separate things?: The importance of scale in public support for solar energy development in upstate New York. Energy Research & Social Science, 86, 102449. https://doi.org/10.1016/j.erss.2021.102449
Nunery, J. S., & Keeton, W. S. (2010). Forest carbon storage in the northeastern United States: Net effects of harvesting frequency, post-harvest retention, and wood products. Forest Ecology and Management, 259(8), 1363–1375. https://doi.org/10.1016/j.foreco.2009.12.029
Payen, F. T., Sykes, A., Aitkenhead, M., Alexander, P., Moran, D., & MacLeod, M. (2021). Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: A meta-analysis. Journal of Cleaner Production, 290, 125736. https://doi.org/10.1016/j.jclepro.2020.125736
Pinto Da Silva, L., & Esteves Da Silva, J. C. G. (2022). Evaluation of the carbon footprint of the life cycle of wine production: A review. Cleaner and Circular Bioeconomy, 2, 100021. https://doi.org/10.1016/j.clcb.2022.100021
Prusova, B., Humaj, J., Kulhankova, M., Kumsta, M., Sochor, J., & Baron, M. (2023). Capture of fermentation gas from fermentation of grape must. Foods, 12(3), 574. https://doi.org/10.3390/foods12030574
Raciti, S. M., Fahey, T. J., Thomas, R. Q., Woodbury, P. B., Driscoll, C. T., Carranti, F. J., Foster, D. R., Gwyther, P. S., Hall, B. R., Hamburg, S. P., Jenkins, J. C., Neill, C., Peery, B. W., Quigley, E. E., Sherman, R., Vadeboncoeur, M. A., Weinstein, D. A., & Wilson, G. (2012). Local-scale carbon budgets and mitigation opportunities for the northeastern united states. BioScience, 62(1), 23–38. https://doi.org/10.1525/bio.2012.62.1.7
Rural energy for america program renewable energy systems & energy efficiency improvement guaranteed loans & grants. (2023). Rural Development. https://www.rd.usda.gov/programs-services/energy-programs/rural-energy-america-program-renewable-energy-systems-energy-efficiency-improvement-guaranteed-loans
Sedjo, R., & Sohngen, B. (2012). Carbon sequestration in forests and soils. Annual Review of Resource Economics, 4(1), 127–144. https://doi.org/10.1146/annurev-resource-083110-115941
Skinner, R. H. (2008). High biomass removal limits carbon sequestration potential of mature temperate pastures. Journal of Environmental Quality, 37(4), 1319–1326. https://doi.org/10.2134/jeq2007.0263
Smith, J. E. (2006). Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States (No. 343). United States Department of Agriculture, Forest Service, Northeastern Research Station. https://www.fs.usda.gov/ecosystemservices/pdf/estimates-forest-types.pdf
Smith, P., Soussana, J., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., Egmond, F., McNeill, S., Kuhnert, M., Arias‐Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro‐Fuentes, J., Sanz‐Cobena, A., & Klumpp, K. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26(1), 219–241. https://doi.org/10.1111/gcb.14815
Sulaiman, M. F., Wagner-Riddle, C., Brown, S. E., Warland, J., Voroney, P., & Rochette, P. (2017). Greenhouse gas mitigation potential of annual and perennial dairy feed crop systems. Agriculture, Ecosystems & Environment, 245, 52–62. https://doi.org/10.1016/j.agee.2017.05.001
Toledo, C., & Scognamiglio, A. (2021). Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision(Three-dimensional agrivoltaic patterns). Sustainability, 13(12), 6871. https://doi.org/10.3390/su13126871
VERIVE, J. M. (2022, April 8). Recapturing co2: It’s a gas. Brewing Industry Guide. https://brewingindustryguide.com/recapturing-co2-its-a-gas/
Yin, Y., Yang, C., Li, M., Zheng, Y., Ge, C., Gu, J., Li, H., Duan, M., Wang, X., & Chen, R. (2021). Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. Science of The Total Environment, 798, 149294. https://doi.org/10.1016/j.scitotenv.2021.149294